

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 4th Semester Examination, 2021

CC8-MATHEMATICS

Multivariate Calculus

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

1. Answer all questions:
(a) Examine, if the function $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\ 0, & x=y=0\end{array}\right.$ is continuous at the origin.
(b) For a conservative field \mathbf{F}, prove that $\operatorname{curl} \mathbf{F}=\mathbf{0}$.
(c) Justify $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x^{2} y^{2}+1}-1}{x^{2}+y^{2}}=0$ using ε - δ definition.
(d) Let $\boldsymbol{F}=x y \boldsymbol{i}-z \boldsymbol{j}+x^{2} \boldsymbol{k}$ and Γ be a curve $x=t^{2}, y=2 t, z=t^{3}$ from $t=0$ to $t=1$. Evaluate the integral $\int \boldsymbol{F} \times d \boldsymbol{r}$ over the curve Γ.
(e) Evaluate $\iint_{R} y e^{x y} d x d y$, where $R=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq b\}$.

GROUP-B

Answer all questions

2. (a) Verify Green's theorem in the plane for $\int\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$ over the curve Γ, where Γ is the boundary of the region defined by $y=\sqrt{x}, y=x^{2}$.
(b) Evaluate $\iint_{a} \frac{\sqrt{a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}}}{\sqrt{a^{2} b^{2}+b^{2} x^{2}+a^{2} y^{2}}} d x d y$, the field of integration being R, the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

UG/CBCS/B.Sc./Hons./4th Sem./Mathematics/MATHCC8/2021

3. (a) Prove that for any vector function \vec{f}, curl $\vec{f}=\vec{\nabla}(\vec{\nabla} \cdot \vec{f})-\nabla^{2} \vec{f}$.
(b) Using Stokes theorem show that

$$
\iint_{S}(y-z) d y d z+(z-x) d z d x+(x-y) d x d y=a^{3} \pi
$$

where S is the portion of the surface $x^{2}+y^{2}-2 a x+a z=0, z \geq 0$.
4. (a) Find the work done by the force $\vec{F}=-y \vec{i}+x \vec{j}+z \vec{k}$ in moving a particle from $(0,0,0)$ to $(2,4,8)$ along a line segment and along the path $\vec{r}=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}$.
(b) Compute the line integral $\int_{\Gamma} x^{3} d x+3 z y^{2} d y-x^{2} y d z$, where Γ is the straight-line segment from $(3,2,1)$ to $(0,0,0)$.

GROUP-C

Answer all questions

5. Prove that $\int_{0}^{1} d x \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y \neq \int_{0}^{1} d y \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x$. Does the double integral $\iint \frac{x-y}{(x+y)^{3}} d x d y$ exist over $E=[0,1 ; 0,1]$? Justify your answer.
6. If $x=u^{2} v, y=v^{2} u$, show that $2 x^{2} f_{x x}+2 y^{2} f_{y y}+5 x y f_{x y}=u v f_{u v}-\frac{2}{3}\left(u f_{u}+v f_{v}\right)$.

GROUP-D

Answer all questions

7. Define the differentiability of a function $f(x, y)$ of two variables x, y at a point (a, b). Show that if $f(x, y)$ is differentiable at (a, b) then f is continuous at (a, b) and that the partial derivatives $f_{x}(a, b)$ and $f_{y}(a, b)$ exist.
8. Using Stoke's theorem prove that $\operatorname{div} \operatorname{curl} \vec{F}=0$ and $\operatorname{curl} \operatorname{grad} \varphi=\overrightarrow{0}$.
